19.11. Model: Process A is isochoric, process B is isothermal, process C is adiabatic, and process D is isobaric. **Visualize:** Please refer to Figure Ex19.11.

Solve: Process A is isochoric, so the increase in pressure increases the temperature and hence the thermal energy. Because $\Delta E_{\rm th} = Q - W_{\rm s}$ and $W_{\rm s} = 0$ J, Q increases for process A. Process B is isothermal, so T is constant and hence $\Delta E_{\rm th} = 0$ J. The work done $W_{\rm s}$ is positive because the gas expands. Because $Q = W_{\rm s} + \Delta E_{\rm th}$, Q is positive for process B. Process C is adiabatic, so Q = 0 J. $W_{\rm s}$ is positive because of the increase in volume. Since Q = 0 J = $W_{\rm s} + \Delta E_{\rm th}$, $\Delta E_{\rm th}$ is negative for process C. Process D is isobaric, so the decrease in volume leads to a decrease in temperature and hence a decrease in the thermal energy. Due to the decrease in volume, $W_{\rm s}$ is negative. Because $Q = W_{\rm s} + \Delta E_{\rm th}$, Q also decreases for process D.

	$\Delta E_{ m th}$	$W_{\rm s}$	Q
A	+	0	+
В	0	+	+
С	—	+	0
D	—	-	-